CBSE Sample Paper Maths Set - B Answer

 Class 8

 Class 8}

Section - A

1. $1 / 2$.
2. third quadrant.
3. 28.
1. 8 cm .
2. Rs 3600 .
3. 10 elements
4. 34.
1. (b) 3

Section - B

9.

Let thedepth of the cylindrical tank be ' h '
Radius $=8 \mathrm{~m}$.
Capacity of tank $=\pi r^{2} h$
$\therefore 5632=\left(\frac{22}{7} \times 8 \times 8 \times h\right) \mathrm{m}^{3}$
$h=\frac{5632 \times 7 \times 1 \times 1}{22 \times 8 \times 8}=28$
Hence, depth of the cylinder is 28 m .

Or,

Area of rhombus $=(1 / 2) d_{1} \times d_{2} \quad$ (where d_{1}, d_{2} are lengths of diagonals.)

$$
\begin{aligned}
& =(1 / 2) \times 20 \times 16 \mathrm{~cm}^{2} \\
& =160 \mathrm{~cm}^{2} .
\end{aligned}
$$

chasefors	

10. P (blue marble) $=$ Number of blue marbles/ Total number of marbles

$$
=6 / 16=3 / 8
$$

11. A number whose product is a one digit number $=1 \times 9=9$

Sum is a two digit number =9+1=10
So, the two numbers are 1 and 9 .
12. 1) Prism is a polyhedron in which the base and top are congruent polygons; whereas a pyramid is a polyhedron in which the base is a polygon.
2) In a prism the lateral faces are parallelograms; whereas in a pyramid, the lateral surfaces are triangles with a common vertex.
13. Let x number of men dig the trench in 6 days.

Number of men	12	x
Days	8	6
$12 \times 8=6 \times x$		
$x=\frac{12 \times 8}{6}=16$ men.		

16 men dig the same trench in 6 days.
14.

Let two adjacent sides of parallelogram be $4 x$ and $5 x$.
Then,
Perimeter of parallelogram $=2 \times$ sum of adjecent sides
$72 \mathrm{~cm}=2(4 \mathrm{x}+5 \mathrm{x})$
$72 \mathrm{~cm}=18 \mathrm{x}$

$$
x=\frac{72}{18}
$$

$$
=4
$$

So, the sides of parallelogram are

$$
\begin{aligned}
4 \mathrm{x} & =4(4) \\
& =16 \mathrm{~cm} \\
5 \mathrm{x} & =5(4) \\
& =20 \mathrm{~cm}
\end{aligned}
$$

cbse	
gruess	CBSEGuess.com

Section - C

15.

In year 2004, sales is 6 million

In year 2005, sales is 12 million
Difference is 6 million. It's the greatest difference between the sales as compared to its previous year.
16. There are $2+3=5$ marbles in the bag.

Number of outcomes of drawing a blue marble is 2 .
\therefore Probability of drawing a blue marble is $2 / 5$.
17.

18. .

Rate of discount $=10 \%$
Selling price $=$ Marked price $\times\left(\frac{100-\text { discount } \%}{100}\right)$

$$
\begin{aligned}
& =280 \times\left(\frac{100-10}{100}\right) \\
& =280 \times \frac{90}{100} \\
& =\text { Rs. } 252 .
\end{aligned}
$$

Rate of profit $=26 \%$
C.P. $=\frac{100}{100+\text { gain } \%} \times$ S.P.
C.P. $=\frac{100}{100+26} \times 252$
$=$ Rs. 200.
\therefore Actual cost price of article is Rs. 200.

Or,

chase	
CBSEGuess.com	

Let the cost Price of bicycle be Rs x
S.P. of the bicycle with 8% gain $=\frac{(100+\text { gain } \%) \times \text { C.P }}{100}$
$=\frac{100+8}{100} \times x$
$=\frac{108 x}{100}$
$=\frac{27}{25} x$
S.P. of the bicycle with 14% gain $=\frac{100+14}{100} \times x$
$=\frac{114}{100}=\frac{57 x}{50}$
Now, $\frac{57 x}{50}-\frac{27 x}{25}=75$
$\Rightarrow \frac{57 \mathrm{x}-54 \mathrm{x}}{50}=75$
$\Rightarrow 3 \mathrm{x}=75 \times 50$
$x=\frac{75 \times 50}{3}=1250$
Hence C.P. of bicycle is Rs. 1250
19.

Simple Interest paid by Shruti for Rs 12,000 at 10\% per annum for 3 years.
S.I $=12000 \times \frac{10 \times 3}{100}=3600$

Shalini paid Compound interest for 3 years on Rs. 12000 at the rate of 8%.

$$
\begin{aligned}
\text { Amount } & =12000 \times\left(1+\frac{8}{100}\right)^{3} \\
& =12000 \times \frac{27}{25} \times \frac{27}{25} \times \frac{27}{25}=\frac{236196000}{15625} \\
& =\text { Rs. } 15116.54
\end{aligned}
$$

C.I $=15116.54-12000=3116.54$

Simple Interest is more than compound interest.
Difference $=$ Rs. $3600-3116.54=483.46$

So, Shruti pays more interest than Shalini of Rs 483.46.

chasefors	CBSEGuess.com

20. The quadrilateral PQRS can be drawn as follows:

Step 1: Draw a line segment PR = 7 cm
Step 2: From P with radius 5.5 cm draw an arc above $P R$.
Step 3: From R with radius 5 cm cut the arc drawn in step 2.
Step 4: From P with radius 4 cm draw an arc below PR.
Step 5: From R with radius 6 cm cut the arc drawn in step 4.

PQRS is the required quadrilateral.

21. Radius of cylinderical pillar $=21 \mathrm{~cm}$

$$
=0.21 \mathrm{~m}
$$

Height of cylinder $=5 \mathrm{~m}$
Curved Surface area of pillar $=2 \pi$ rh

$$
\begin{aligned}
& =2(22 / 7) \times 0.21 \times 5 \\
& =6.6 \mathrm{~m}^{2}
\end{aligned}
$$

Curved Surface area of 4 pillars $=4 \times 6.6$

$$
=26.4 \mathrm{~m}^{2}
$$

Or,

Height of cylinder (h) $=7 \mathrm{~cm}$
Radius of cylinder (r) $=20 \mathrm{~cm}$
Volume of cylinder $(V)=\pi r^{2} h$

$$
\begin{aligned}
& =(22 / 7) \times 20 \times 20 \times 7 \\
& =8800 \mathrm{~cm}^{2}
\end{aligned}
$$

chasefors	

22.

Let the no. of boxes be x .

No. of boxes	25	x
No. of bottles	12	20

$$
\begin{aligned}
& 25 \times 12=20 \times x \\
& x=\frac{25 \times 12}{20}=15 \text { boxes }
\end{aligned}
$$

15 boxes will be filled, if 20 bottles are packed.
23. Let the original number be $10 a+b$.

Sum of the digits $a+b$
$a+b+18=10 a+b$
$\therefore 9 a=18$ or
$a=2$
Also, the digit at the unit's place is double the digits in the ten's place, i.e. $\mathrm{b}=2 \mathrm{a}$
$\therefore b=4$
So, the two digit number is 24 .

Or,
Let the original number be $10 a+b$.
It is given that $b=3 a$
Also, $a+b=12$
$\Rightarrow a+3 a=12$
$\Rightarrow 4 a=12$
$\Rightarrow a=3, b=3 a=3 \times 3=9$
$\therefore a=3, b=9$
Hence the number is 39 .
24. Let the original number be $10 a+b$.

It is given that $b=3 a$
Also, $a+b=12$
$\Rightarrow a+3 a=12$
$\Rightarrow 4 a=12$

$\Rightarrow a=3, b=3 a=3 \times 3=9$
$\therefore a=3, b=9$
Hence the number is 39 .

Section - C

25. Speed of car $=30 \mathrm{~km} / \mathrm{h}$

Distance covered in 1 hour $=1 \times 30$

$$
=30 \mathrm{~km}
$$

Table for distance-time is given below:

Time	1	2	3
Distance	30	60	90

Graph for distance- time is given below:

From graph, Parul takes 4 hours to cover 120 km distance.

Or,
Mayank deposited money in bank = Rs. 1400
Rate of interest of bank $=10 \%$
Mayank got interest for 1 year $=(10 / 100) \times 1400$

$$
\text { = Rs. } 140
$$

Table for relationship between time and the interest earned by Mayank.

chasefors	

Time(in years)	1	2
		3
Interest(in Rs.)	140	280

The graph for relationship between time and the interest is given below:
26.

Let two sides of parallelogram be x and $(x+20)$.
Perimeter of parallelogram $=2(x+x+20)$

$$
\begin{aligned}
140 & =2(2 x+20) \\
2 x+20 & =\frac{140}{2} \\
2 x & =70-20 \\
x & =\frac{50}{2} \\
& =25 \\
x+20 & =25+20 \\
& =45 \mathrm{~cm}
\end{aligned}
$$

Thus, adjacent sides of the parallelogram are 45 cm and 25 cm .
27.
(i) Sum of digits $=2+2+3+x+4$

$$
=11+x
$$

$(11+x)$ should be divisible by 3 .
This is possible if $11+x=3,6,9,12, \ldots$
Since x is a digit so,

$$
11+x=12
$$

$$
x=1
$$

(ii) Sum of digits $=4+5+4+3+x$

$$
=16+x
$$

($16+x$) should be divisible by 3 .
This is possible if $16+x=3,6,9,12,15,18 \ldots$
Since x is a digit so,

$$
\begin{aligned}
16+x & =18 \\
x & =2
\end{aligned}
$$

(iii) Sum of digits $=2+5+6+2+x+1$

$$
=16+x
$$

$(16+x)$ should be divisible by 3 .
This is possible if $11+x=3,6,9,12,15,18 \ldots$
But since x is a digit so,

$$
\begin{gathered}
16+x=18 \\
x=2
\end{gathered}
$$

(iv) Sum of digits $=3+4+9+5+x$

$$
=21+x
$$

$(21+x)$ should be divisible by 3 .
This is possible if $21+x=3,6,9,12, \ldots, 21,24, \ldots$
But since x is a digit so,

$$
\begin{array}{r}
21+x=21 \\
x=0
\end{array}
$$

28. (a) Outcomes of a composite number are $(4,6)$.
(b) Outcomes of a non-composite number are $(1,2,3,5)$.
(c) Outcomes of a number greater than 4 are $(5,6)$.
(d) Outcomes of a number not greater than 3 are $(1,2)$.

chasefors	

29.

Selling price of washing machine $=$ Rs. 5760
Two successive discounts are 15% and 10%.
Let marked price of washing machine $=$ Rs. x
S.P. of washing machine after first discount $=x\left(\frac{100-15}{100}\right)$

$$
\begin{aligned}
& =\frac{85 x}{100} \\
& =\frac{17 x}{20}
\end{aligned}
$$

S.P. of washing machine after second discount $=\frac{17 x}{20}\left(\frac{100-10}{100}\right)$

$$
\begin{aligned}
& =\frac{17 x}{20} \times \frac{90}{100} \\
& =\frac{153 x}{200}
\end{aligned}
$$

Then, according to condition

$$
\begin{aligned}
\frac{153 x}{200} & =\text { Rs. } 5760 \\
x & =\text { Rs. } 5760 \times \frac{200}{153} \\
x & =\text { Rs. } 7529.40 \text { (approx) }
\end{aligned}
$$

Thus, the marked price of washing machine is Rs.7529.40.
30.

Let cost price of television = Rs. x
Marked price of television $=x\left(\frac{100+25}{100}\right)$

$$
\begin{aligned}
& =\frac{125}{100} \mathrm{x} \\
& =\frac{5}{4} \mathrm{x}
\end{aligned}
$$

But, marked price $=12,000$
Then,

$$
\begin{aligned}
\frac{5}{4} x & =12,000 \\
x & =12,000 \times \frac{4}{5} \\
& =2,400 \times 4 \\
& =\text { Rs. } 9,600
\end{aligned}
$$

Thus, the cost price of television $=$ Rs. 9600
Rate of discount on television $=10 \%$

$$
\begin{aligned}
\text { Selling price of television } & =12,000\left(\frac{100-10}{100}\right) \\
& =12,000 \times \frac{90}{100} \\
& =\text { Rs. } 10,800 \\
\text { Profit on television } & =10,800-9,600 \\
& =\text { Rs.1,200 } \\
\text { Rate of Profit } & =\frac{1200}{9600} \times 100 \\
\text { Rate of Profit } & =12.5 \%
\end{aligned}
$$

chasefors	

31.

(i) Sum of digits $=2+3+x+4$

$$
=9+x
$$

$(9+x)$ should be divisible by 9 .
This is possible if $9+x=9,18, \ldots$
Since x is a digits so,

$$
\begin{array}{r}
9+x=9 \\
x=0
\end{array}
$$

(ii) Sum of digits $=5+4+3+x$

$$
=12+x
$$

$(12+x)$ should be divisible by 9
This is possible if $12+x=9,18, \ldots$
Since x is a digit so,

$$
\begin{aligned}
9+x & =18 \\
x & =9
\end{aligned}
$$

(iii) Sum of digits $=6+2+x+1$

$$
=9+x
$$

$(9+x)$ should be divisible by 9 .
This is possible if $9+x=9,18, \ldots$
Since x is a digit so,

$$
\begin{array}{r}
9+x=9 \\
x=0
\end{array}
$$

(iv) Sum of digits $=2+3+4+9+5+x$

$$
=23+x
$$

$(23+x)$ should be divisible by 9 .
This is possible if $23+x=9,18,27, \ldots$ But since x is a digit so,

$$
\begin{array}{r}
23+x=27 \\
x=4
\end{array}
$$

32. Let the average speed of faster train be $v \mathrm{~km} / \mathrm{hr}$.

First train finished distance in 10 hrs at a speed of $56 \mathrm{~km} / \mathrm{hr}$. Then,

chasesuess	CBSEGuess.com

$$
\begin{aligned}
10 \times 56 & =8 \times v \\
v & =(10 \times 56) / 8 \\
& =70 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Thus, the speed of the faster train is $70 \mathrm{~km} / \mathrm{hr}$.
33.

No. men	Days	Acres
$10 \downarrow$	$6 \uparrow$	$5 \uparrow$
$8 \downarrow$	x	4

Let the number of days be x.
Then,
$\frac{6}{x}=\frac{8}{10} \times \frac{5}{4}$
$\frac{6}{x}=1$
$x=6$
Thus, they will take 6 days to complete the mow of 4 acres of land.
34.

Length of pool $=20 \mathrm{~m}$
Breadth of pool $=15 \mathrm{~m}$
Depth of pool $=4 \mathrm{~m}$
Surface area of pool $=2(l+b) h$

$$
\begin{aligned}
& =2(20+15) \times 4 \\
& =2 \times 35 \times 4 \\
& =280 \mathrm{~m}^{2}
\end{aligned}
$$

Rate of cementing $=$ Rs. $12 / \mathrm{m}^{2}$
Cost of cementing $=280 \times 12$

$$
=\text { Rs. } 3360
$$

Or,

chatguess	

Length of sheet $=44 \mathrm{~m}$
Breadth of sheet $=20 \mathrm{~m}$
When it is rolled along length, a cylinder is formed.
So, height of cylinder $=20 \mathrm{~m}$
Circumference of base $=44 \mathrm{~m}$

$$
2 \pi r=44
$$

$$
\begin{aligned}
2 \times \frac{22}{7} \times r & =44 \\
r & =\frac{44 \times 7}{2 \times 22} \\
r & =7 \mathrm{~m}
\end{aligned}
$$

So,
Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times(7)^{2} \times 20 \\
& =22 \times 7 \times 20 \\
& =3080 \mathrm{~m}^{3}
\end{aligned}
$$

